Macrophage reverse cholesterol transport in mice expressing ApoA-I Milano.
نویسندگان
چکیده
OBJECTIVE To compare the abilities of human wild-type apoA-I (WT apoA-I) and human apoA-I(Milano) (apoA-I(M)) to promote macrophage reverse cholesterol transport (RCT) in apoA-I-null mice infected with adeno-associated virus (AAV) expressing either WT apoA-I or apoA-I(M). METHODS AND RESULTS WT apoA-I- or apoA-I(M)-expressing mice were intraperitoneally injected with [H(3)]cholesterol-labeled J774 mouse macrophages. After 48 hours, no significant difference was detected in the amount of cholesterol removed from the macrophages and deposited in the feces via the RCT pathway between the WT apoA-I and apoA-I(M) groups. Analysis of the individual components of the RCT pathway demonstrated that the apoA-I(M)-expressing mice promoted ATP-binding cassette transporter A1 (ABCA1)-mediated cholesterol efflux as efficiently as WT apoA-I but that apoA-I(M) had a reduced ability to promote cholesterol esterification via lecithin cholesterol-acyltransferase (LCAT). This resulted in reduced cholesteryl ester (CE) and increased free cholesterol (FC) levels in the plasma of mice expressing apoA-I(M) compared to WT apoA-I. These differences did not affect the rate of delivery of labeled cholesterol to the liver via SR-BI-mediated selective uptake or its subsequent excretion in the feces. CONCLUSIONS Within the limits of the in vivo assay, WT apoA-I and apoA-I(M) are equally efficient at promoting macrophage RCT, suggesting that if apoA-I(M) is more atheroprotective than WT apoA-I it is not attributable to an enhancement of macrophage RCT.
منابع مشابه
Overexpression of apolipoprotein A-I promotes reverse transport of cholesterol from macrophages to feces in vivo.
BACKGROUND Abundant data indicate that overexpression of apolipoprotein A-I (apoA-I) in mice inhibits atherosclerosis. One mechanism is believed to be promotion of reverse cholesterol transport, but no direct proof of this concept exists. We developed a novel approach to trace reverse transport of labeled cholesterol specifically from macrophages to the liver and feces in vivo and have applied ...
متن کاملInfluence of apolipoprotein A-I domain structure on macrophage reverse cholesterol transport in mice.
OBJECTIVE The goal of this study was to determine the influence of apolipoprotein A-I (apoA-I) tertiary structure domain properties on the antiatherogenic properties of the protein. Two chimeric hybrids with the N-terminal domains swapped (human-mouse apoA-I and mouse-human apoA-I) were expressed in apoA-I-null mice with adeno-associated virus (AAV) and used to study macrophage reverse choleste...
متن کاملIncreased atherosclerosis in mice lacking apolipoprotein A-I attributable to both impaired reverse cholesterol transport and increased inflammation.
To test the hypothesis that apolipoprotein A-I (apoA-I) functions specifically to inhibit atherosclerosis independent of the level of high-density lipoprotein cholesterol (HDL-C) by promoting both reverse cholesterol transport and HDL antiinflammatory function in vivo, we established a murine atherosclerosis model of apoA-I deficiency in which the level of HDL-C is well maintained. ApoA-I-/- mi...
متن کاملImpaired Reverse Cholesterol Transport and Increased Inflammation Increased Atherosclerosis in Mice Lacking Apolipoprotein A-I Attributable to Both
To test the hypothesis that apolipoprotein A-I (apoA-I) functions specifically to inhibit atherosclerosis independent of the level of high-density lipoprotein cholesterol (HDL-C) by promoting both reverse cholesterol transport and HDL antiinflammatory function in vivo, we established a murine atherosclerosis model of apoA-I deficiency in which the level of HDL-C is well maintained. ApoA-I / mic...
متن کاملEffects of native and myeloperoxidase-modified apolipoprotein a-I on reverse cholesterol transport and atherosclerosis in mice.
OBJECTIVE Preclinical and clinical studies have shown beneficial effects of infusions of apolipoprotein A-I (ApoA-I) on atherosclerosis. ApoA-I is also a target for myeloperoxidase-mediated oxidation, leading in vitro to a loss of its ability to promote ATP-binding cassette transporter A1-dependent macrophage cholesterol efflux. Therefore, we hypothesized that myeloperoxidase-mediated ApoA-I ox...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 29 10 شماره
صفحات -
تاریخ انتشار 2009